Neighbourhood sampling in bagging for imbalanced data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neighbourhood sampling in bagging for imbalanced data

Various approaches to extend bagging ensembles for class imbalanced data are considered. First, we review known extensions and compare them in a comprehensive experimental study. The results show that integrating bagging with under-sampling is more powerful than over-sampling. They also allow to distinguish Roughly Balanced Bagging as the most accurate extension. Then, we point out that complex...

متن کامل

Extending Bagging for Imbalanced Data

Various modifications of bagging for class imbalanced data are discussed. An experimental comparison of known bagging modifications shows that integrating with undersampling is more powerful than oversampling. We introduce Local-and-Over-All Balanced bagging where probability of sampling an example is tuned according to the class distribution inside its neighbourhood. Experiments indicate that ...

متن کامل

Roughly Balanced Bagging for Imbalanced Data

Imbalanced class problems appear in many real applications of classification learning. We propose a novel sampling method to improve bagging for data sets with skewed class distributions. In our new sampling method “Roughly Balanced Bagging” (RB Bagging), the number of samples in the largest and smallest classes are different, but they are effectively balanced when averaged over all subsets, wh...

متن کامل

Actively Balanced Bagging for Imbalanced Data

Under-sampling extensions of bagging are currently the most accurate ensembles specialized for class imbalanced data. Nevertheless, since improvements of recognition of the minority class, in this type of ensembles, are usually associated with a decrease of recognition of majority classes, we introduce a new, two phase, ensemble called Actively Balanced Bagging. The proposal is to first learn a...

متن کامل

Applicability of Roughly Balanced Bagging for Complex Imbalanced Data

Roughly Balanced Bagging is based on under-sampling and classifies imbalanced data much better than other ensembles. In this paper, we experimentally study its properties that may influence its good performance. Results of experiments show that it can be constructed with a small number of component classifiers, which are quite accurate, however, of low diversity. Moreover, its good performance ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neurocomputing

سال: 2015

ISSN: 0925-2312

DOI: 10.1016/j.neucom.2014.07.064